A nucleus-coupled electron transfer mechanism for TiO2-catalyzed water splitting.
نویسندگان
چکیده
Based on first-principles calculations, we reveal that in the photocatalytic oxygen evolution reaction (OER) at the TiO2/water interface, the formation of an O-O bond always involves the anti-bonding σ2p* state elevated from the valence band into the conduction band of TiO2 regardless of a detailed reaction pathway. The role of photoholes is to deplete this anti-bonding state once it emerges into the band gap. The reaction barrier is thus determined by the onset where photoholes enter the reaction. This process represents a new reaction mechanism, termed nucleus-coupled electron transfer (NCET), where electron transfer is enabled by the movement of nuclei that promotes the reactive orbital to become the frontier orbital. The NCET mechanism for the OER is shown to exhibit an overall kinetic barrier surmountable at room temperature.
منابع مشابه
Investigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
We fabricated plasmonic gold nanoparticle (AuNP)-TiO2 nanocomposite films and measured the photocurrent that originates from the water-splitting reaction catalyzed by the AuNP-TiO2 nanocomposite photoelectrocatalytic (PEC) electrode. The localized surface plasmon resonance (LSPR) of the gold nanoparticles affected the generation of photocurrent by TiO2 upon illumination with visible light. Elec...
متن کاملPlasmon resonant enhancement of photocatalytic water splitting under visible illumination.
We demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Under visible illumination, we observe enhancements of up to 66× in the photocatalytic splitting of water in TiO2 with the addition of Au nanoparticles. Above the plasmon resonance, under ultraviolet radiation we obser...
متن کاملDynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) rely on photoinduced charge separation at a dye/semiconductor interface to supply electrons and holes for water splitting. To improve the efficiency of charge separation and reduce charge recombination in these devices, it is possible to use core/shell structures in which photoinduced electron transfer occurs stepwise through...
متن کاملPhotovoltage Effects of Sintered IrO2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells
Water-splitting dye-sensitized photoelectrochemical cells (WSDSPECs) utilize high surface area TiO2 electrodes functionalized with light absorbing sensitizers and water oxidation catalysts. Because water splitting requires vectorial electron transfer from the catalyst to the sensitizer to the TiO2 surface, attaching both sensitizer and catalyst to TiO2 in the correct sequence and stabilizing th...
متن کاملVisible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts.
We found that plasmonic Au particles on titanium(iv) oxide (TiO2) act as a visible-light-driven photocatalyst for overall water splitting free from any additives. This is the first report showing that surface plasmon resonance (SPR) in a suspension system effectively induces overall water splitting. Modification with various types of metal nanoparticles as co-catalysts enhanced the evolution of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 26 شماره
صفحات -
تاریخ انتشار 2015